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Objective: To define resilience metrics for cognitive decline based on plasma and

cerebrospinal fluid (CSF) amyloid-β (Aβ) and examine the demographic, genetic, and

neuroimaging factors associated with interindividual differences among metrics of

resilience and to demonstrate the ability of such metrics to predict the diagnostic

conversion to mild cognitive impairment (MCI).

Methods: In this study, cognitively normal (CN) participants with Aβ-positive were

included from the Sino Longitudinal Study on Cognitive Decline (SILCODE, n = 100)

and Alzheimer’s Disease Neuroimaging Initiative (ADNI, n = 144). Using a latent variable

model of data, metrics of resilience [brain resilience (BR), cognitive resilience (CR),

and global resilience (GR)] were defined based on the plasma Aβ and CSF Aβ. Linear

regression analyses were applied to investigate the association between characteristics

of individuals (age, sex, educational level, genetic, and neuroimaging factors) and their

resilience. The plausibility of these metrics was tested using linear mixed-effects models

and Cox regression models in longitudinal analyses. We also compared the effectiveness

of these metrics with conventional metrics in predicting the clinical progression.

Results: Although individuals in the ADNI cohort were older (74.68 [5.65] vs. 65.38

[4.66], p < 0.001) and had higher educational levels (16.3 [2.6] vs. 12.6 [2.8], p < 0.001)

than those in the SILCODE cohort, similar loadings between resilience and its indicators

were found within both models. BR and GR were mainly associated with age, women,

and brain volume in both cohorts. Prediction models showed that higher CR and GR

were related to better cognitive performance, and specifically, all types of resilience to

CSF Aβ could predict longitudinal cognitive decline.

Conclusion: Different phenotypes of resilience depending on cognition and brain

volumes were associated with different factors. Such comprehensive resilience provided

insight into the mechanisms of susceptibility for Alzheimer’s disease (AD) at the individual

level, and interindividual differences in resilience had the potential to predict the disease

progression in CN people.
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INTRODUCTION

Alzheimer’s disease (AD) was originally defined as a clinical
pathologic disease mainly based on clinical symptoms and

neuropathologic changes like deposition of amyloid-β (Aβ) and
hyperphosphorylated tau. Recent developments of AD have
proposed research frameworks based on biomarkers (McKhann

et al., 2011; Jack et al., 2018), which enhanced the understanding
of the mechanism and brought substantial research interest

to the preclinical stage of AD (Dubois et al., 2018; Jessen
et al., 2018; Slot et al., 2018; Li et al., 2019). However, studies
have shown that biomarkers and cognitive performance were
discordant in some individuals with the pathology of AD often
due to individual variations in resilience to the pathology of
AD (Katzman et al., 1988; Ghisays et al., 2020). Therefore,
as a theoretical construct, terms like reserve, resilience, and
maintenance were defined to enhance the understanding of
the individual difference related to diseases of the brain (Stern
et al., 2018). Resilience, which represents the degree of structural
and cognitive deficits associated with the pathology of AD, can
be divided into brain resilience (BR) and cognitive resilience
(CR) (Rentz et al., 2017) or a combination of both [e.g., global
resilience (GR); Hohman et al., 2016; Arenaza-Urquijo and
Vemuri, 2018)]. High or low resilience reflects better or worse
than predicted properties of the brain or cognitive performances
based on the pathological burden. Compared with the traditional
index of the reserve including educational level, intelligence
quotient (IQ), and occupational complexity, resilience defined by
residual approaches provided a feasible quantitative measure of
the impact of pathology on cognition (Ewers, 2020).

Currently, studies have found that high resilience may slow
the rate of cognitive decline (van Loenhoud et al., 2019;
Ossenkoppele et al., 2020), and the protective effect was more
notable in the early stage before the cognitive impairment (Lo
et al., 2013; Arenaza-Urquijo et al., 2017), which had important
implications for intervention in the cognitively normal (CN)
stage. In addition, these studies generally used cerebrospinal
fluid (CSF) Aβ and PET Aβ to measure the level of the
amyloid deposition. However, both methods are invasive or
expensive, which are not suitable for widespread screening in
the preclinical phase of AD. The advent of plasma Aβ has
provided an alternative that is affordable and less invasive.
Previous studies have shown the relationship between plasma
Aβ and central Aβ (Hanon et al., 2018; Chatterjee et al., 2019;
Schindler et al., 2019; Vergallo et al., 2019). The biomarker of
amyloid peptide and the Alzheimer’s disease risk (BALTAZAR)
study found that the plasma Aβ was associated with cognitive
performance, apolipoprotein E (APOE)-ε4 status, and CSF Aβ

in cross-sectional analyses (Hanon et al., 2018). In a longitudinal
study, Schindler et al. found that the plasma Aβ was inversely
correlated with the baseline PET Aβ and correlated with the
baseline CSF Aβ in CN older adults and could be used to predict
the future amyloid status (Schindler et al., 2019).

However, it is still unclear that, in the context of CN
individuals, which factors contribute to thesemetrics of resilience
(BR, CR, and GR) to Aβ and whether the levels of resilience
defined by plasma Aβ and CSF Aβ could both help predict

the baseline and longitudinal cognitive decline. To address
the questions mentioned above, we, therefore, quantified the
metrics of resilience based on plasma Aβ and CSF Aβ. Using
linear regression analyses, we tested whether demographic (age,
sex, and educational level), genetic (APOE-ε4), and imaging
markers are associated with these metrics of resilience. Then
for investigating the added predictive value of different metrics
of resilience, we explored the hypothesis that these metrics of
resilience could help predict the diagnostic conversion and high
resilience could slow down the cognitive decline longitudinally in
CN individuals.

METHODS

Participants
Participant data from the Sino Longitudinal Study on Cognitive
Decline (SILCODE) project (Li et al., 2019) from March
2017 to October 2018 and Alzheimer’s Disease Neuroimaging
Initiative (ADNI) (Weiner and Veitch, 2015) were used for this
retrospective study. The SILCODE is a longitudinal observational
project focusing on elderly Chinese people. Its primary goal
was to identify the individuals in preclinical AD who would
convert to mild cognitive impairment (MCI) and understand the
disease mechanism. The ADNI was launched in 2003 as a public–
private partnership whose goal was to test whether biological
markers and clinical assessments could be combined to measure
the progression of individuals in the spectrum of AD. The Aβ-
positive CN participants were recruited from the SILCODE (N
= 100) and the ADNI (N = 144). The median follow-up was
9.4 months [interquartile range (IQR): 0–17.3] for the SILCODE
and 70.8 months (IQR: 35.9–91.2) for the ADNI. All CNs
underwent clinical and neuropsychological assessments, plasma
(SILCODE) or examination of the CSF (ADNI), MRI scans at
baseline, and had a normal performance on neuropsychological
tests adjusted for age, sex, and education. Participants with the
following conditions were excluded: current major psychiatric
diagnosis such as depression and anxiety, serious neurologic
diseases, diseases that could cause cognitive decline (e.g., thyroid
dysfunction, severe anemia, syphilis, or HIV), a history of
brain lesions, or head traumas (additional inclusion/exclusion
criteria can be found at www.adni-info.org and https://www.
clinicaltrials.gov/ct2/show/study/NCT03370744).

Standard Protocol Approvals,
Registrations, and Patient Consent
Informed written consent was obtained from all participants
at each site, and study procedures were approved by the
institutional review board at each center. The ADNI
and the SILCODE are listed in the ClinicalTrials.gov
registry (ADNI-1: NCT00106899; ADNI-2: NCT01231971;
ADNI-GO: NCT01078636; ADNI-3: NCT02854033; and
SILCODE: NCT03370744).

Neuropsychological Assessments
Across both studies, the neuropsychological assessment covered
similar cognitive domains. To aid comparability and calculate
the CR, we chose six neuropsychological measures used by
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both studies and combined them into three domains: memory,
language, and executive. The six measures were the Boston
Naming Test and the Animal Naming for the language domain,
the Trail Making Test A and the Trail Making Test B for the
executive domain, and the auditory verbal learning test (AVLT)
delayed recall and the delayed recognition scores for the memory
domain. Scores of the Mini–Mental State Examination (MMSE)
and the Montreal Cognitive Assessment (MoCA) were used
to assess global cognition. All test scores were z-transformed
within each test to remove the bias among measures. Within
each domain, z-transformed scores were averaged to obtain a
composite score.

MRI Acquisition and Processing
Structural MRI scans were acquired on 3T scanners from
GE Healthcare (Chicago, USA), Philips Medical Systems
(Eindhoven, Netherlands), and Siemens Medical Solutions
(Erlangen, Germany) (http://adni.loni.usc.edu/methods/
documents) in the ADNI study and acquired on 3T SIGNA
PET/MR (GE Healthcare) and Tim Trio (Siemens Medical
Solutions) in the SILCODE study. The mean interval between
the baseline cognitive visit and related neuroimaging visit
was 23 and 22 days for the SILCODE and the ADNI cohorts,
respectively. Structural MR images were processed using
SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12). In
the preprocessing, structural images were removed from the
non-brain tissue; segmented into the gray matter (GM), the
white matter (WM), and the CSF; and then modulated and
normalized into the MNI template. A 6mm full width at half
maximum (FWHM) Gaussian isotropic kernel was used to
spatially smooth the normalized images. The intracranial volume
(ICV) was computed as the sum of the GM, the WM, and the
CSF. The left and the right hippocampal were determined for
subsequent analysis.

Biomarker Collection and Analyses of the
Plasma and the CSF
In the SILCODE cohort, plasma samples were collected in
polypropylene tubes with ethylenediaminetetraacetic acid
(EDTA). Samples were centrifugated, aliquoted, and stored
at −80◦C. Plasma samples were measured using the kit: Aβ

Peptide Panel 1 (4G8) Kit (Mesoscale Diagnostics, Rockville,
Maryland, USA), and they were randomized and measured in
duplicate with the same aliquot, blinded for clinical diagnosis.
Levels of Aβ42 showed good average coefficients of variation of
duplicate measurements (4.14% CV) and within the detection
limit (2.5–1,271 pg/ml). In the ADNI, lumbar puncture was
performed as previously described (http://www.adni-info.org/).
Values of Aβ42 in samples of the CSF were generated by a novel,
fully automated electrochemiluminescence immunoassay
(Elecsys assay) (Bittner et al., 2016) and downloaded
from the LONI site (provided in UPENNBIOMK9.csv and
UPENNBIOMK10.csv files).

Gaussian Mixture Modeling
Since there is no accepted standard cut-point to determine
amyloid status in relation to plasma Aβ, we calculated the

cut-point to determine the amyloid status with the Gaussian
mixture modeling in the SILCODE cohort. This approach was
suitable since it is data-driven and does not assume similar
distributions of levels of Aβ across cohorts (Mormino et al., 2014;
Wang et al., 2016). First, 1–5 Gaussian distributions allowing
for either equal or unequal variances were fit to the data, and
the number of distributions that best described the data was
determined by the Bayesian information criterion (BIC) (see
Supplementary Figure 1). We found that the optimal model
contained two Gaussian distributions that reflected abnormal
vs. normal Aβ. Each individual was assigned a probability
of belonging to either the abnormal or normal distribution.
Considering the relatively high false positive rate of abnormal
Aβ based on only CN population and plasma Aβ, CNs with
>50% probability of belonging to abnormal Aβ distribution
as well as smaller than 25% uncertainty corresponding to
the classification were labeled Aβ+. Otherwise, they were
labeled Aβ-. The final cut-points were 11.43 pg/ml in the
SILCODE group. For the ADNI group, we used a pre-
defined cut-point (980 pg/ml) to determine the amyloid status
(Hansson et al., 2018).

Statistical Analyses
Statistical analyses were performed in the R version 3.6.2
(http://www.r-project.org/) and R-package “plspm” was used
to construct the partial least squares (PLS) path models. Two
multivariate PLS path models (Figure 1) were constructed to
quantify the BR and CR and a second-order latent composite
measure (GR) for each cohort. The PLS path model, which is
for studying complex multivariate relationships among observed
and latent variables, is the partial least squares approach to
the structural equation modeling. It provides a framework
for analyzing multiple relationships between a set of blocks
of variables. A full path model comprises two submodels:
an outer model that reflects the relationships between each
latent variable and its block of indicators and an inner model
that reflects the relationships between latent variables. In this
study, for the outer model, memory, language, and executive
domain residuals were indicators of the CR when left and
right hippocampus volume residuals were indicators of the
BR. For the inner model, the GR was derived from its latent
variables (CR and BR). Specifically, we performed individual
linear regression models between composite scores/hippocampal
volumes and plasma/CSF Aβ levels and used the standardized
residual as an indicator of CR/BR. For example, memory
domain residuals to Aβ were calculated as residuals from a
regression model with memory domain scores as the outcome
and Aβ as the predictor, representing as one of the indicators of
the CR.

To evaluate which factors contribute to resilience, we
performed two sets of multivariable linear regression models.
In the first set, multivariable linear regression models were
performed with age, sex, educational levels, APOE-ε4 status,
and the whole brain volume as independent variables and the
respective metric of resilience as a dependent variable. In the
second set, the cognitive scores and brain volumes for residuals
calculation were also included as independent variables. Then,
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FIGURE 1 | Path diagram depicting the PLS models for both cohorts. The PLS path model includes the outer model and the inner model. The outer model includes

indicators presented as capsules and the first order latent variables presented as hexagons. The inner model depicts the relationships between the first order latent

variables (CR and BR) and the second order latent variable (GR). The loadings between a latent variable and its indicators are presented as numbers. A, the PLS

model for the ADNI; B, the PLS model for the SILCODE. CR, cognitive resilience; BR, brain resilience; GR, global resilience. PLS, partial least squares; ADNI,

Alzheimer’s Disease Neuroimaging Initiative; SILCODE, Sino Longitudinal Study on Cognitive Decline.

linear mixed effect models were used for longitudinal cognitive
analyses. The global cognition test (MoCA) was used as the
outcome variable, and fixed effects included our interested
effects (i.e., the effect of resilience of interest ∗ time) as well
as other effects that we wanted to test or control, including
time (from the baseline), age, sex, education, and APOE-
ε4 status. The random effect included the intercept of an
individual. In addition to the original mixed effect models, we
also performed another set of mixed effect models adjusting
the effects of the original cognitive and brain variables used
to derive resilience and included the time interactions with
each of these variables. To further evaluate the utility of
resilience in predicting the conversion from normal controls
(NCs) to MCI, the Cox analysis for each metric of resilience
was performed. For visualization purposes, we dichotomized

the sample according to low vs. high resilience (CR, BR, or

GR) using a median split. Using these dichotomized groups, we

computed three 2-level variables (CR: CR+/CR–; BR: BR+/BR–
; and GR: GR+/GR–) and Kaplan–Meier survival curves were

created to show the conversion rate from the baseline with

respect to resilience. Finally, for evaluating the added value of

resilience for predicting the longitudinal cognitive decline, we
used the Akaike information criterion (AIC) and the BIC to

evaluate both the predictive models with conventional indicators

(MoCA/MMSE and hippocampal volume/brain volume) and the
predictive models with conventional indicators plus resilience. A
lower AIC or BIC value indicates a better model. The level of
significance was set at p < 0.05.

RESULTS

Characteristics of Participants
A total of 244 participants were included in the study. From
the SILCODE group, 100 participants were included [59 (59%)
female; mean (SD) age, 65.38 (4.66); mean (SD) MMSE score,
28.84 (1.13)]. From ADNI group, 144 participants were included
[74 (51.4%) female; mean (SD) age, 74.68 (5.65); mean (SD)
MMSE score, 29.08 (1.10)]. The characteristics and clinical details
of the participants are presented in Table 1. The average age
[65.38 (4.66) vs. 74.68 (5.65), p < 0.001] and educational level
[12.6 (2.8) vs. 16.3 (2.6), p < 0.001] of participants in the
SILCODE were significantly lower than those in the ADNI.

The PLS Path Model
The PLS path models for the SILCODE and the ADNI cohorts
are presented in Figure 1. For evaluating the quality of the
two models, we assessed three aspects of the measures of the
model. Both models showed good one-dimensionality of the
indicators (SILCODE: mean Cronbach’s alpha = 0.67, mean
Dillon–Goldstein’s rho = 0.81, mean first eigenvalue = 1.79;
ADNI: mean Cronbach’s alpha = 0.69, mean Dillon–Goldstein’s
rho = 0.82, mean first eigenvalue = 1.80). Furthermore, the
indicators were well-explained by its latent variable as average
loading for the CR and the BR was 0.81 for the SILCODE cohort
and 0.82 for the ADNI cohort. The degree to which a given
construct was different from other constructs was good (all cross-
loadings in two models <0.26). In sum, both models fit well and
had a goodness-of-fit score of 0.73.
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TABLE 1 | Characteristics of the participants of the study.

SILCODE ADNI P

Sample size, n 100 144

Age 65.38 (4.66) 74.68 (5.65) <0.001

Female (%) 59 (59) 74 (51.4) 0.297

Education level 12.6 (2.8) 16.3 (2.6) <0.001

MMSE 28.84 (1.13) 29.08 (1.1) 0.094

MoCA 25.73 (2.08) 25.63 (2.3) 0.752

AVLT-delaya 7.03 (1.85) 7.52 (3.83) /

AVLT-recoga 22.46 (1.41) 12.72 (2.61) /

AFT 19.13 (4.54) 20.88 (5.22) 0.007

BNT 24.96 (2.86) 28.03 (2.27) <0.001

STT-Ab 59.95 (17.48) 35.28 (13) /

STT-Bb 138.64 (35.73) 88.86 (44.31) /

APOE-ε4 (%) 21 (21) 61 (42.4) 0.001

Aβ levelc 8.9 (1.87) 808.18 (281.32) /

MMSE, Mini–Mental State Examination; MoCA, Montreal Cognitive Assessment; AVLT-

delay, auditory verbal learning test-delay recall; AVLT-recog, auditory verbal learning test-

recognition; STTA, shape trail making test A; STTB, shape trail making test B; AFT, animal

fluency test; BNT, Boston Naming Test; APOE, apolipoprotein E. Data are presented as

mean (SD) unless otherwise indicated.
aAVLT in the Sino Longitudinal Study on Cognitive Decline (SILCODE) was HuaShan

version and in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) was Rey AVLT

version A/B.
bSTT-A and STT-B in the SILCODE were Alternative Shape Trail Making Test A and B and

in the ADNI were Shape Trail Making Test A and B.
cSource of amyloid-β (Aβ) in the SILCODE was the plasma and in the ADNI was the

cerebrospinal fluid (CSF).

Factors Associated With Resilience
Multivariable models (Table 2) showed that factors contributing
to different metrics of resilience were overall consistent in
both cohorts. Younger age was associated with higher levels of
all three metrics of resilience. Specifically, higher educational
levels were related with greater CR and larger whole brain
volume was related to greater BR and GR. After including the
original cognitive and brain measures that resilience derived
from Supplementary Table 1 the young, women, and large brain
volume were associated with the BR and the GR while the CR was
only related to cognitive composite scores.

Longitudinal Cognitive Progress
Linear mixed models (Table 3) in two cohorts both showed
that higher CR (SILCODE: β = 1.064, p < 0.001; ADNI: β

= 0.814, p = 0.002) and higher GR (SILCODE: β = 0.677, p
< 0.001; ADNI: β = 0.661, p = 0.007) were associated with
better cognitive performances. We also identified a significant
positive interaction between all metrics of resilience and time
in the ADNI cohort and a similar trend in the SILCODE
cohort, suggesting that participants with a higher level of
resilience would perform better over time. After controlling
the baseline cognitive performance and hippocampal volumes
(Supplementary Table 2), associations between resilience and
cognition were insignificant in the SILCODE cohort, whereas
higher CR (β = 0.977, p = 0.004), BR (β = 0.565, p < 0.001),
and GR (β = 0.420, p = 0.036) in the ADNI cohort continued

to predict slower cognitive decline in the CNs. As the results of
Cox regression models and survival curves showed (Figures 2,
3), all three metrics of resilience were protective factors to
clinical progression (all values of p < 0.05). Information
criteria for prediction models with and without resilience were
provided in Table 4. Compared with the predictive models with
conventional variables (MMSE and brain volume), models with
both conventional variables and resilience showed smaller AIC
and BIC values (CR: AIC1 = −4.64, BIC1 = −2.84; BR: AIC1

=−5.56, BIC1=−3.76; GR: AIC1=−12.15, BIC1=−10.34).
Similar results were found in the comparison of the predictive
models with another combination of conventional variables and
the predictive models with conventional variables and resilience
(Supplementary Table 3).

DISCUSSION

This study provides information about different phenotypes of
resilience, their associations with demographic, genetic, and
neuroimaging factors in a relatively large number of CNs. Two
latent variable models to quantify the metrics of resilience related
to Aβ in two cohorts were constructed. Results from this study
suggested that younger individuals, women, and people with
larger brain volumes were related to greater brain and GR when
exposed to the Aβ burden. All three phenotypes of resilience
based on the plasma and the CSF Aβ were observed to have a
protective effect against cognitive decline in long-term follow-up.
These metrics of resilience may capture additional information
when the consequence of the clinical progression can be
predicted than conventional cognitive and brain indicators.

Metrics of resilience were defined with the PLS model
separately in each cohort and the loadings between cognitive
indicators, brain indicators, and the respective resilience as
well as the loadings between the BR, the CR, and the GR
were calculated. The framework and goodness-of-fit in both
models were similar and consistent with the previous work,
indicating to a certain extent that the residualization approach
was a feasible and reliable method of quantifying the metrics
of resilience. Previous literature (Jagust, 2013; Scholl et al.,
2016; Jack et al., 2019) had suggested that the brains were
more vulnerable to various kinds of damages in aging and the
prevalence of pathologic biomarkers in AD were found to be
different in women and men with respect to age. Our results
had confirmed the associations of these factors and resilience
and indicated that age, sex, and brain volume were important
for investigating the BR and the GR. In CN individuals,
women, young individuals, or larger brain volume sustained
better cognitive function and the preservation of the brain
structure when exposed to pathological changes. Explanations
could be the neural compensation mechanism, the protective
effects of sex steroid hormones before menopause, the gene
expression of heterochrony, and the threshold models of brain
reserve (Satz, 1993; Berchtold et al., 2008; Pike et al., 2009).
Intriguingly, women displayed both higher levels of pathologic
biomarkers in AD and higher resilience (Jack et al., 2019),
which seems to be congruent. However, the protective effect
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TABLE 2 | Demographic, genetic, and neuroimaging factors associated with metrics of resilience to Aβ.

Variables Cognitive resilience Brain resilience Global resilience

Standardized β P Standardized β P Standardized β P

SILCODE

Age −0.207 0.027 −0.217 0.033 −0.277 0.005

Sex −0.240 0.021 −0.090 0.416 −0.203 0.06

Educational levels 0.362 <0.001 −0.079 0.436 0.155 0.112

APOE-ε4 0.143 0.129 0.002 0.985 0.082 0.398

Whole brain volume 0.161 0.126 0.248 0.032 0.271 0.015

ADNI

Age −0.284 0.001 −0.332 <0.001 −0.409 <0.001

Sex −0.093 0.322 −0.026 0.769 −0.075 0.372

Educational levels 0.166 0.047 −0.010 0.903 0.096 0.198

APOE-ε4 0.010 0.904 −0.012 0.872 −0.003 0.97

Whole brain volume 0.110 0.241 0.300 0.001 0.279 0.001

TABLE 3 | Results of the mixed effect models to predict global cognition in both cohorts.

Main effects SILCODE ADNI

β t P β t P

CR 1.064 5.811 <0.001 0.814 3.171 0.002

CR * years −0.058 −0.302 0.763 0.118 3.069 0.002

BR 0.163 0.838 0.403 0.035 0.137 0.891

BR * years 0.146 0.841 0.402 0.197 5.302 <0.001

GR 0.677 3.63 <0.001 0.661 2.706 0.007

GR * years 0.058 0.328 0.744 0.217 5.972 <0.001

FIGURE 2 | Forest plots for metrics of resilience as predictive factors for clinical conversion. Resulting hazard ratios for models of cox regression classified by (A) CR,

(B) BR, and (C) GR. All covariates were continuous except for sex and APOE status which were dichotomous. CR, cognitive resilience; BR, brain resilience; GR,

global resilience.

of resilience may diminish with age and the accumulation of
pathological changes. In post-menopausal women, the depletion
of sexual hormones, the gene expression changes in specific
brain regions (like superior frontal gyrus), and high Aβ burden
accumulation would accelerate cognitive decline although they
remain clinically normal (Yuan et al., 2012; Jack et al., 2017).
Compared with factors associated with the BR and the GR, we
found a specific association between educational levels and CR as
CN individuals with higher education level could cope with more

severe pathological burden (Kemppainen et al., 2008; Pettigrew
et al., 2017; van Loenhoud et al., 2019). The explanation of
how education enhanced the reserve capacity and slowed down
cognitive decline in individuals with accumulated pathological
deposits was still unclear and was even challenged since the
paradoxical results of education on modifying longitudinal
cognitive decline (van Loenhoud et al., 2019; Wilson et al.,
2019) though it was generally accepted that higher educational
levels before progressing into the cognitive impaired stage were
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FIGURE 3 | Kaplan-Meier survival curve according to 2-level variable in the ADNI cohort. High conversion rate was associated with (A) low CR, (B) low BR, and (C)

low GR. CR, cognitive resilience; BR, brain resilience; GR, global resilience.

TABLE 4 | Information criteria for prediction models with and without resilience.

Model AIC 1 BIC 1

Cognitive predictora

Without cognitive resilience 374.86 – 383.89 –

With cognitive resilience 370.21 −4.64 381.05 −2.84

Brain predictorb

Without brain resilience 372.97 – 382.01 –

With brain resilience 367.41 −5.56 378.25 −3.76

Combinedc

Without global resilience 373.15 – 383.99 –

With global resilience 361.00 −12.15 373.65 −10.34

AIC, Akaike information criterion; BIC, Bayesian information criterion. All models were corrected for age, sex, educational levels, and APOE-ε4 status.
aThis model included MMSE as the predictor.
bThis model included brain volume as the predictor.
cThis model included both MMSE and brain volume as the predictor.

beneficial to our brains. However, after controlling the cognitive
performance, the association between the CR and education
levels disappeared, suggesting this relation was poor and more
likely reflected the association between the baseline cognition and
educational levels.

We found no association between the APOE genotype and
the resilience at baseline in both cohorts. The dissociation of
the APOE phenotype and the resilience could be caused by
the dual effects on the brain of different APOE genotypes and
the effect of the APOE on pathology was dominated in the
later stage in AD. Consistent with this explanation, Wolk et al.
(2010) reported APOE-ε4 carriers with AD displayed severe
impairments in the memory domain rather than in execution
and language domains. Another report (Pievani et al., 2009)
found carriers were associated with greater temporal volume
loss, and non-carriers were associated with greater frontoparietal
volume loss.

Although previous studies exploring resilience have shown
that higher resilience scores were associated with better cognitive

performances and a smaller risk of the clinical progression,
many of them defined the resilience based on educational levels,
reading abilities, or lifestyle (Roe et al., 2008; Kaup et al., 2015;
Vemuri et al., 2017). These metrics remained stable in the
elderly and hardly reflected the current level of resilience of
an individual. Therefore, they may fail to reflect the individual
difference in cognitive or structural brain processes over time.
However, several investigators have found residual approaches
based on cognitive/brain predictors and biomarkers in AD to
quantify that resilience could provide more information at the
individual level over time and include information from various
cognitive domains and biomarkers (Reed et al., 2010; Hohman
et al., 2016). With this approach, we found that all types of
resilience could predict longitudinal global cognitive changes,
even adjusting for the baseline cognitive performance and
hippocampal volumes and considering conventional predictors.
This finding suggested that resilience was not only associated
with demographic, genetic, cognitive, and imaging features but
also provided added information about the prognosis.

Frontiers in Aging Neuroscience | www.frontiersin.org 7 February 2021 | Volume 13 | Article 610755

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Lin et al. Resilience to Amyloid-β

The strength of our study lies in a relatively large sample
of Aβ-positive CN individuals with demographic, genetic,
neuroimaging, and biomarker data of AD, and a longitudinal
design allowed us to inform the impact of different resilience
to the clinical progression. Two cohorts provided the possibility
of validating factors contributing to the different metrics of
resilience and the effects of resilience on cognitive decline.

The present study has several limitations. The differences in
characteristics of the participants and measurements across two
cohorts led to only comparable cognitive tests with respect to
the included three domains. This limitation was partly resolved
by the combination of test scores and transformation. Another
limitation was the different ranges of follow-up and different
methods of accessing the amyloid in the two cohorts. The short
follow-up period for the SILCODE cohort not only resulted in the
absence of the Cox regression analysis for this cohort, as there
were no sufficient clinical progression datapoints available for
analysis but alsomay lead to the relatively poor predictive value of
resilience compared to that in the ADNI cohort, though growing
evidence has demonstrated that plasma Aβ concentrations are
highly correlated with brain amyloidosis (Nakamura et al., 2018;
Risacher et al., 2019). In addition, as the false positive rate for
the classification of the Aβ status if only based on the CSF or the
plasma was higher than those based on multiple methods or Aβ

PET, we, therefore, adjusted the cut-point within the SILCODE
by controlling the classification uncertainty of the Aβ abnormal
below 25% and used a pre-defined cut-point in the ADNI that
was determined to optimize the concordance with the Aβ PET
visual read.

CONCLUSION

This study provides information about the associations between
the resilience based on the plasma Aβ and the CSF Aβ

and demographic, genetic, and neuroimaging factors in Aβ-
positive CN individuals. We found that younger individuals,
women, and people with larger brain volumes were associated
with higher brain and GR. Metrics of resilience based on Aβ

had a protective effect against the clinical progression and
could provide additional information beyond the cognitive
performance and imaging features in CN people.
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